
 i

Software Development and Test Methodology for a Distributed Ground

System

Presented by:
George Ritter

Marshall Space Flight Center
Lockheed Martin Space Operations

256-544-8269
george.ritter@msfc.nasa.gov

Technical Contributor:
Pat Guillebeau

 ii

Abstract

The Marshall Space Flight Center’s (MSFC) Payload Operations Center (POC) ground
system has evolved over a period of about 10 years. During this time the software
processes have migrated from more traditional to more contemporary development
processes in an effort to minimize unnecessary overhead while maximizing process
benefits. The Software processes that have evolved still emphasize requirements
capture, software configuration management, design documenting, and making sure the
products that have been developed are accountable to initial requirements.

This paper will give an overview of how the Software Processes have evolved,
highlighting the positives as well as the negatives. In addition, we will mention the
COTS tools that have been integrated into the processes and how the COTS have
provided value to the project.

 iii

EHS Software Design Methodology

Table of Contents

The Enhanced HOSC System (EHS).. 1
EHS Software Development ... 1

Level A Development ... 1
Figure 1: Software Development Process... 2

Level B Development ... 2
Table 1: Sample Trace .. 3

Software Design.. 3
Figure 2: Sample Architecture Diagram... 4

Software Coding and Unit Test... 4
Integration Testing and Code Iterations.. 5

The Development Test Environment .. 5
The Development Integration Test Phase ... 5

Table 2: DIT Test Statistics .. 6
The HOSC Integration Test Phase.. 6

Software CM and the CM Build Process.. 7
Figure 3: Software Change Control Process... 7
Figure 4: CM Source File Control .. 8

Spiral Development Approach.. 8
Software Design Process Modifications with PC Development..................................... 9

Lessons Learned.. 9
Conclusions... 10
Appendix A: Metrics; CM Builds, Lines of Code, COTs Products.................................. 11

CM Builds, Platform Types, and COTS Products .. 11
Types of Code and Lines of Code that make up EHS: ... 11
COTs used in the Software Development Process ... 11

Appendix B: Terminology .. 12

 1

The Enhanced HOSC System (EHS)
Marshall Spaceflight Center’s Payload Operations Integration Center (POIC) is home to
EHS. EHS is a command and control telemetry processing ground system made up of
computers, networks, and software that has been developed and put into operations in
support of the International Space Station payload operations. EHS began over 10 years
ago as an upgrade replacement system for the “POC 2” VAX-VMS that support Space-
Lab payload operations on-board the Space Shuttle. EHS is also on-line as the ground
control system for the Chandra X-Ray observatory in Cambridge, Mass.

EHS Software Development
EHS Software Development has historically followed the waterfall approach in which
high level requirements known as Level A’s are first developed in response to project
needs. These level A requirements are decomposed into smaller subsystem requirements
known as Level B’s. The Level B’s are used by software developers to design and code
the software system. In this fashion, the system design “falls like water” from high level
(very low detailed) requirements, to very low level (high level of detail) code. A
complete software development process includes the testing phases in which the software
must operate successfully before the system can be certified as flight ready. Software
creation and software change is controlled through our software Configuration
Management (CM) processes. One of the most important parts of our software CM is the
way we “tag” software files that are being delivered, based on the change that drives the
delivery. We tag software with HOSC Problem Reports (HPRs) and with Engineering
Change Requests (ECRs).

Later in our systems maturity we have experimented in some areas with a modification to
our waterfall model with a methodology called Spiral Development. Spiral Development
has proven useful for areas where we are migrating existing requirements to new
technologies.

Whatever form of the development process we use, our system requirements and design
must be documented. The EHS design processes has been captured in a Process
Definition Documents (PDD). There have been times we have diverged from the PDD,
but overall it is our standard for doing business and deviations from the process require
an individual waiver.

Level A Development
The Software Development process is shown in Figure 1. The process begins with
Engineering Change Requests (ECRs) that drive the creation and updates of Level A
requirement. The EHS has generic Level A’s and project specific Level A requirements
since EHS is used for multiple flight projects including Chandra X-Ray Observatory and
the International Space Station (ISS). The Level A requirements are typically created by
the Systems Engineering portion of our project organization, and are grouped into
functional subsystems. The subsystems include Telemetry Acquisition, Telemetry
Processing, Commanding, System Level Services, Web Services, Database, or Payload
Information Management. The Level A’s are reviewed in depth at this point by software

 2

development to determine the feasibility, level of effort, and proposed schedule for their
implementation. In the early stages of this project, Level A’s were reviewed at a typical
Software Requirements Review (SRR) meeting. Now that our system is in a much more
mature state, these requirements, along with the assessment of the developers, are
reviewed at an internal board meeting called the HMCG. The HMCG includes
representatives of all POIC stakeholders. POIC stakeholders are FD41 (POIC NASA
sponsor), CADRE (POIC Operations), and the contractor’s (UMS) Operations Team,
System Engineering, and development groups, plus representatives from remote sites that
will be using EHS for their science mission aboard ISS. The purpose of the HMCG is to
determine if the Project should proceed with the implementation of the requirements.

CM
Software

BuildSCE

Level A Req.
Generic and Project

Specific

Level B
Req.

(SRS)

Functional
Breakdown

EHS Software Development and Test

Design
(SDD)

Design
(SDD)

Design
(SDD)

SRR/HMCG

PDR

CDR

codecode codecode
code

codecode
code

Software
Development

Software
CM

Trace

A2
SCE1A1

B3
B2
B1

SCE2

Development
Test

Environment
(DTE)

Updates (original HPRs)

DITT
Systems

HITT
Systems

Soft
ware

 +

Rele
ase

 no
tes

Softw
are

 +

Rele
ase

 notes

Updates (IPRs)(HPRs)

Flight
Systems

Dep
loy

ECR

software

ProblemsProblems

Software
Repository

code
SCE1

SCE2

SCE3

COTS
Spec

HPRs BR
CD

Test
Procedure

Trac e a nd Te st P ro ced ur es

Figure 1: Software Development Process

Level B Development
Once the Level A’s have been approved by the HMCG and base-lined, the requirements
are functionally decomposed into smaller pieces known as Computer Software
Configuration Items (CSCIs). Simply put, CSCIs are a group of requirements for which
software can be created by approximately 3 or 4 individuals. Level B requirements are
then developed for each CSCI and placed into one or more Software Requirements
Specifications (SRSs). The level of detail for SRSs is inconsistent at best but typically
must be at a level that allows you to start thinking of implementation. Each SRS
Requirement is placed into a trace document along with the associated Level A
requirement for which the Level B can be traced. A sample from our trace is shown in
Table 1. Each Level B must be traced to insure we are not inappropriately making up
new requirements, and to insure there are no un-implemented level A requirements. This
process is subjective and again requires the review and consent of all state holders.

 3

027v1 Par SRS 027 V1 Requirement B Bld Lev A Doc Lev A

Par
Level A Requirement

3.2.2.1.a The Interface Display Operation User process
shall adhere to MSFC-STD-1956.

2 | 3 | 4 | 4.1
e1.0

MSFC- RQMT-
1440

14.2.1.
A

The Display Operation UI shall adhere to
MSFC-STD-1956.

3.2.2.1.aa The Interface Display Operation User process
shall provide the capability to enable
limit/expected state sensing for all objects on a
display.

2 | 3 | 4 | 4.1 |
e2.0

MSFC- RQMT-
1440

14.2.1.
L

The Display Operation UI shall provide the
capability to toggle limit sensing on and
off.

3.2.2.1.ab The Interface Display Operation User process
shall provide the capability to zoom or un-zoom a
time or XY plot on a display.

2 | 3 | 4 | 4.1
e2.0

MSFC- RQMT-
1440

14.2.1.
C

The Display Operation UI shall provide the
capability to view data as updated.

Table 1: Sample Trace

The Level B requirements are officially reviewed at a Preliminary Design Review (PDR).
In recent years the SRR and PDR have been combined into one review (we call it PDR)
so that level A’s, level B’s, and traces are reviewed at once. Depending on the extent of
the changes, the PDR may involve formal presentations, or it may just involve a “paper”
review. Review Item Discrepancies (RIDs) can be assessed against the Level B
requirements to document any issues the stakeholders might have.

Some CSCIs specify the use of COTs products. All EHS COTS are captured in the COTS
Specification which is typically created at the same time as software SRSs A list of the
COTS products used in the EHS Design is included in Appendix A.

Software Design
Once the Level B requirements are approved, the software development group begins the
software design phase. In reality the software design phase begins during requirements
specification. Prototypes are done early on for critical and high-risk areas. A more
formal look at prototype development will be discussed in the Spiral Development
section of this paper. In the classic approach, software developers take the Level B
Requirements and covert them to software design. Our design is documented in Software
Design Documents (SDDs). SDDs contain functional data flows, descriptions of the
interfaces to other CSCIs, software architecture drawings, and screen dumps for designs
that have a user interface. As EHS has matured, the software architecture drawing is the
primary piece of the SDD that has continued to be developed. All other details are
captured in code. Figure 2 is an example of a software architecture drawing for part of
EHS that is developed on the xxx/Unix systems.

 4

Architecture Diagram

User

Printer

GPU

SM TNS

Exception
Monitor

SM

L L

TNS
Extract
MSID

L

SSPM

Access
Local
Table

L

TDB
DARLs

L

MH
Log

Message
L

Exception
Monitor

TNS
Network
Services

L

Pre-released /
Baselined /
Archived
Telemetry
Database

Start

Reconfig
Common

Config
Time

Terminate

MessagesReport Requests
Report Data

Continuous
Limit

Monitor

L

SSPM

MH
Log

MessageL

L

TNS
Extract
MSID

Time / Telemetry
Notification Requests

Terminate

Enable / Disable / Refresh/Configure

GPU
Print

Services
L

Messages / Exception Advisories

Update Notifications

APT

Exception

Local
Table

Local
Storage

Message
Log

SSPM
Group
Status

Limit
Monitor
Request
Socket

Last
Refresh
Value
Table

Group
Activation

Table

Start

C

User
Info

Table

TNS
User
infoL

Figure 2: Sample Architecture Diagram

SDDs are reviewed at a CDR when RIDs can again be written against the design. UMS
uses a Design Approval Board to determine that design is ready for coding. RIDs must
be resolved and documents submitted for official updates. A Design Approval Checklist
is used to insure all the bases are covered. Again, coding has probably already begun,
but some of the issues raised by the CDR RIDS may remain unresolved until they are
closed via the Design Review Board. This may last well into the coding phase.

Another event that takes place at design time is the creation of Software Configuration
Elements (SCEs). SCEs define a particular executable or library unit. SCEs are groups
of files for which an individual make-file exists in the software build. [Please refer to
Appendix B for a definition of terms used.] SCE names are used for tracking changes in
software configuration management process.

Software Coding and Unit Test
The actual creation of software is the magical part of the process. The best we can do is
give software developers well understood requirements, a few important coding rules, the
proper development tools, and best test environment to work through this phase. In EHS
we developed a naming standard, and coding standard that is verified by running a
Software Standards Verification tool (C source only). We were also required to be as
“POSIX compliant as possible” in case some time in the future we needed to migrate to
another POSIX compliant operating system.

One of the most important tools is the software configuration management tool. The CM
tool maintains the software repository. The CM tool allows us to keep track of software

 5

baselines and manage software change by keeping track of the reason each software
source file has changed. The CM tool also allows developers to maintain different levels
of sharing during the development phase. In this manner, interface code can be shared
even while the next version of an interface is in work. We use Clear-case for our CM
tool. Clear-case maintains a database of the software source files in what is called a
Version Object Base (vob). Developers use Clear-case “views” to created and build their
portion of the project. The “branch” structure of ClearCase allows developers to
integrate with each other more smoothly when they are ready to move beyond unit
testing.

The goal of all unit testing is 100% code statement coverage. When developers have
successfully completed unit testing and basic integration testing, the source files are
promoted, in Clear-case, to the CM build level. For a more detailed description of how
CM manages software changes, refer to the section titled “Software CM and the CM
Build Process”

Integration Testing and Code Iterations
Early testing begins at the code unit level during the code phase of development. There is
some integration testing done at the unit level to avoid writing too many stubs or drivers.
However, our official integration testing is broken into three phases outside of unit
testing. These phases are the Development Test Environment (DTE) phase, the
Development Integration Test (DIT) phase, and the HOSC Integration Test (HIT) phase.
Each successive phase invokes stricter software change control then the previous phase.
Iterating, or changing the code during integration test phases is crucial to progressing to
more in depth levels of testing. The Level of test-team independence also increases from
one test phase to the next with the HIT phase being the most independent.

The Development Test Environment
The CM build is first delivered to the Development Test Environment (DTE). The DTE
hardware is separate from development hardware and should be as much like flight
hardware and networks as is possible. This environment is intended to provide developers
a place to verify that the CM version of their application “make” comes out working the
same as the version they have been working with in their environment. The DTE is also
where the next level of integration testing occurs. Applications developers drive this
testing phase since the code to this point is very new and more prone to interface errors.
Changes are iterated through the CM process whenever a developer chooses, as long as
the code change is consistent with the approved content of the build. Code changes at
this level are managed in Clear-case with the same “tag” as the original delivery. This
process is shown in Figure 1 with the flow titled “Updates (original HPRs/ECRs).” A
changed source file has it’s newer version re-tagged and merged again to the CM branch
for inclusion in the CM build. In the DTE phase of testing CM typically builds and loads
the software on a daily basis.

The Development Integration Test Phase
The Development Integration Test Phase is primarily intended to insure that the new
capabilities delivered in the current build, successfully integrate into the entire system.

 6

In this phase we move the CM build out of the developer’s area and into an area used by
non-developer-testers. These test personnel work independent of the developers to verify
that the software delivered meets the intent of the HPR fix or ECR. Testers have
developed functional procedures for core capabilities that encompass groups of Level A
requirements. In the DIT phase a subset of the test procedures are run to ensure that the
overall system is intact, and any new requirements are met. Sometimes Level B
requirements are used to determine what and how to test a more complex capability. For
the DIT phase, developers provide preliminary release notes documenting software
changes and how testing was done by developers. At the end of the DIT phase testers
produce metrics that look like Table 2.

Functional
Tests

Level
A’s

Success Fail HPRs
Deliver
ed

HPRs
Passed

IPRs Gen’d

Time Tagged
Commanding

12 12 0 1 1 0

Command
Groups

15 15 0 1 1 0

Command via
Scripting

30 30 0 0 0 0

Update
command

12 11 1 2 2 1

Remote
Commanding

25 25 0 1 1 1

Total 121 120 1 8 8 4

Table 2: DIT Test Statistics

You can see in Figure 1 that code iterations are performed in the DIT phase by
identifying problems with Internal Problem Reports (IPRs). IPRs are stored in a File-
maker Pro data base and developers can use the IPR as a Clear-case merge tag. IPRs are
not reviewed by any stakeholders other than developers and testers. Code iterations in
the DIT phase happen a couple times per week.

Once the DIT Testers are satisfied that the intent of the HPRs and ECRs is met, and that
any IPRs have been corrected, we hold a Build Ready Review (BR) to officially
“promote” the software to the next level of testing. At BR, CM creates a Compact Disk
from their final software build. Developers turn in final copies of release notes and HPR
resolutions. The CD and this paperwork make up the BR package and a copy gets stored
in the project CM vault.

The HOSC Integration Test Phase
The HOSC Integration Test Phase exists primarily to verify the contents of the CD by
running more system level tests on the build delivery. The CD must be good since this is
our product used to load for flight. The same test procedures that were used in the DIT
phase are also used in the HIT phase, but the there is more concentration on all aspects of

 7

the functional tests and not just on fixes and updates. In addition, load testing is
performed during the HIT phases. Problems found during HITT are documented with
HPRs and fixes for these HPRs are can only be included n a new release of the system.
At the end of the HIT phase a composite set of metrics from DIT and HIT testing is
created by the test team that communicates testing statistics similar to Table 2, but with
more categories such as number of HPRs and types of HPRs (regression, new-capability)
generated in each phase of test. The completion of these metrics provides a method for
continuous improvement by allowing analysis to be done at each phase so that test
procedures can be improved based on problem reports written after the completed phase.

Software CM and the CM Build Process
The software CM group only accepts software for approved ECRs and HPRs for
scheduled releases. Notice in Figure 3 how each group creates ECRs, HPRs and IPRs
that flow into CM. CM takes approved change and creates a Code Baseline Checklist
(CBC) for each ECR, HPR, and IPR. The developer uses that CBC to submit a merge
request for the files that need to be modified or created. Software CM uses the files listed
on the CBC to merge to the CM branch and create the CM Build.

Software
Change Control Process

IPR
Data Base
(FM Pro)

HPR Board HMCGDIT Tester

HPR
Data Base
(FM Pro)

ECR
Data Base

approve write approve

CM

Code Base
Checklist

DB
(FM Pro)

creates

Developer

Merge
Request

creates

CM
Software

Build

write
HIT/DIT
and
Ops
And Dev.

Figure 3: Software Change Control Process

Figure 4 shows more detail in the area of managing software source files. Software
developers make changes to source files and then they apply a label that has been created
by CM. This label is the CBC number which consists of the combination of the build
number and the ECR, HPR, or IPR number (label example: HPRD2345-6.1) The CBC
keeps track of the source files that have been merged for that label and it also has
information such as the software developer’s name, the Software Configuration Element
(SCE), and the list of files merged. Software developers use the CBC form to submit

 8

merge requests to CM. CM takes the filenames listed on the merge request, and runs a
Clearcase script that finds the filenames with the labels on the developer branch, and
merges the files to the CM branch. The label that was on the version of the file on the
developer branch is also transferred to the new version created on the CM branch. Once
CM has merged source files from the developer branches to the CM controlled branch,
they initiate the software build. In this fashion, our software CM processes are automated
and well understood by all contributors.

SCE

Software
Change Control

(Labels)

Software
Development

Software
CM (Clearcase)

CM
Software

Build

Updates (IPRs)

(HPRs)

IPRs

SCE
Filename

Label
(IPR or HPR

Or ECR)SCE SCE

Developer “branch”

CM “branch”

HPRs ECRs

Figure 4: CM Source File Control

Spiral Development Approach
A few years ago UMS began the process of determining how to migrate our systems
away from the more expensive SGI systems that have a defined end-of-life, onto
commodity-based PC systems. While migrating the technologies, the base system
requirements have not changed much. For this reason we needed to pick a development
approach that matches the problem space.

Spiral development methodology defines a cyclic approach for growing a systems degree
of definition and implementation. The Spiral Development Process must defined a set of
anchor points or milestones for ensuring stakeholder commitment to feasible and
mutually satisfactory system solutions.

Our current system’s end-of-life and high COTS maintenance costs forced us to develop
a HOSC migration strategy where we were fairly confident we wanted to move the user
desktop applications to a Windows 2000 environment. This allows EHS to be run from a

 9

commodity based platform and to have EHS applications more easily integrate with the
thousands of PC applications on the market. Another direction to move in is away from
xxx/Unix on our server platform functions to a PC-Linux environment. Again the
motivation is hardware costs and long term interoperability with future COTS products.

Referencing Figure 1, we chose existing requirements in the trace that needed to be
migrated to one of the new platforms (Win 2K or Linux), designed, coded, delivered,
tested, operated, re-evaluated, chose more requirements and iterated again. We updated
the trace in Figure 1 to add the Build in which the requirement is satisfied on the Win 2K
platform (e2.0 = EPC version 2.0)

Another area where an iterative or Spiral development approach is best suited is in the
Payload Information Management (PIMS) are. PIMS features needed to be experienced
by the users for them to determine the detail requirements. Successive PIMS deliveries
resulted in user’s needs being extremely close to the PIMS capabilities.

Software Design Process Modifications with PC Development
While working on the HOSC migration process, we decided to try to minimize the
impacts that were incurred when creating SDDs. Although the majority of the
information in our existing SDDs is useful, there did sometimes tend to be too much
emphasis on interface details before code was actually happening. This emphasis is
inappropriate given the level of detail at SDD creation time. So we chose to represent the
PC design with the architecture drawing. The architecture drawings are very useful for
showing interfaces without having the code level details. Architecture drawings are also
good at showing processes, libraries, and over-all design structure. Documenting the
high level interfaces allows for a system wide review of the overall design.

SDDs also include a section with User Interface screen dumps that we decided could be
seen when running the prototype application rather than seeing the screens on paper. So
with the changes proposed to the SDD content, we decided to not create SDDs but to
include the architecture drawings as part of the software CM system, and to call these
drawings the Software Development Folder. When the software has to change due to
HPRs and ECRs, architecture drawings are updated, then tagged and merged just like
source code files.

Lessons Learned
The first lesson is don’t over analyze requirements. Early on in EHS development, we
spent a little too much time making perfect SRSs, presentations etc, when we should
probably have been prototyping more pieces of the system. Our attention to detail at the
requirements level and SDD level was very high and that costs time and also made those
documents higher maintenance. When the coding began, designs changed and that
invalidated a lot of documents so the documents had to be redone, and this wasted time.

The second lesson is an iterative development process with heavy user involvement is
best. When we started small, and let users experience the capabilities, we found that we
developed software that more closely met user’s needs. When you spend less time

 10

analyzing requirements and design documents (lesson one) you are free to prototype and
work with the users.

The third lesson is don’t focus incessantly on rapping up document details. Sometimes
we spend days and weeks trying to close the loop on old RIDs and document updates that
have an extremely low value overall. The time spent on things like this could be better
spent focusing on overall product reliability and workability.

The fourth lesson is you need a test environment that MATCHES your flight
environment. Time should be spent in the software design phase trying to design flight-
like environments. The effort will save lots of software rework.

The fifth lesson is remain open to process improvements particularly moving from one
phase of development to another. An example is our method for getting code merged.
For the initial build, all new code was approved for delivery. Initially Code Baseline
Checklist (CBC) requests were handwritten paper submittals used for merge requests.
This evolved into a Filemaker Pro database where developers could enter information
about files that need to be modified or created , print a hardcopy and submit the hardcopy
to software configuration management. This evolved into our current process of having
developers enter merge information into the CBC Filemaker Pro database and submit the
merge request from within the database. The current merge request process is easier for
those involved and less error prone.

Conclusions
The job of developing systems is a job of change. Our development processes exist so
that we can effectively manage this change. If the processes are too stringent, overall
productivity is slow, and we will never deliver a system in a timely fashion. If the
processes are too flexible, then the change is out of control and the system quality is
affected, and productivity again decreases.

In EHS development we have evolved our processes to be a combination of traditional
and new. We handle our requirements in a more traditional fashion. This facilitates good
test procedures and combined with the proper test environments, allows us to ensure
accuracy and quality in our systems development. We have more recently migrated the
design processes to a more iterative, user focused process that relies less on the document
controls and more on “proof on concept” methods. In summary, we have been able to
“change” the way we change, so as to develop cost effective, high quality systems.

 11

Appendix A: Metrics; CM Builds, Lines of Code, COTs Products
This section is provided to give some perspective as to the size of EHS, and the number
of different platforms and technologies that are managed.

CM Builds, Platform Types, and COTS Products
Patform/OS: Build Platform Type COTs
xxx/Unix: EHS,
CERT, WEED, EDG

EHS Servers:
Telemetry, Command,
Data Base, SMAC,
Login, ERIS

xxx platform “C Stuff”, Failsafe,
Framemaker, Networker , Java
runtime/plug-in/JDK, Oracle, SQL,
Teleuse, Netscape

xxx/Unix: PIMS PIMS Server Vfind, Draper Labs Timeliner
Compiler, Java Mail, Java XML

xxx/Unix Web Web Server Netscape communicator/directory
server/Iplanet, Java runtime/plug-
in/JDK, Networker, Perl, Visibroker

xxx/Unix PDSS PDSS Servers
PC/Win 2k: EPC,
MPS

User Client
Workstation

Acrobat, Internet Explorer, Netscape
Nav., Norton, MS Office, Oracle Client,
X-Thinpro

Types of Code and Lines of Code that make up EHS:
Type of Code LOC Count

.c 1.8 M

.d (Teleuse GUI code) 250K

.pcd (Teleuse GUI Definitions) 350K
Java 260K
.cc 18K
.pc 216K
.sql 152K
4GL 1.3M
.h 184K
Scripts 34K
Total 4.564M

COTs used in the Software Development Process
Product Purpose

FileMaker Pro HPR, IPR, CBC Data Bases
ClearCase Source Code CM
Visio, MS Powerpoint Software Architecture Drawings
MS Word, Software Through Pictures SRS, SDDs,

 12

Appendix B: Terminology
make: the process of compiling and linking software source files
make-file: the file that defines the criteria for a particular make
build: the process of running the make and creating binary images in the form of
executables and libraries that are combined into a release package that is loadable.
load: the process of taking a successful Build and installing it to run on a computer
merge: the process of moving a source file from one are of control called a “branch” to
another area or branch. When a source file is merged, a new version of the file is created
in the CM tool on the branch where the file is merged to.
branch: and area of control. Developers have branches, groups of developers have
branches, and the Software CM group has branches.
version: an instantiation of a source file

	Main Menu
	Table of Contents
	Table of Authors
	G. Ritter
	P. Guillebeau

	Go To Abstract

